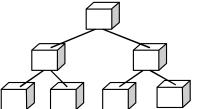
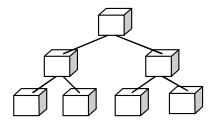

BlueGene/L Hardware

- BG/L networks

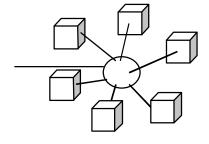
- Compute ASIC


- Partitioning

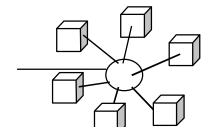
BlueGene/L - Five Independent Networks


3 Dimensional Torus

Point-to-point

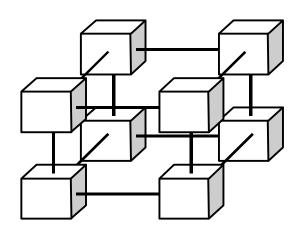

Global Tree

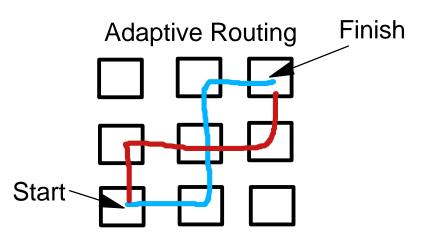
Global Operations


Global Barriers and Interrupts

• Low Latency Barriers and Interrupts

Gbit Ethernet


File I/O and Host Interface

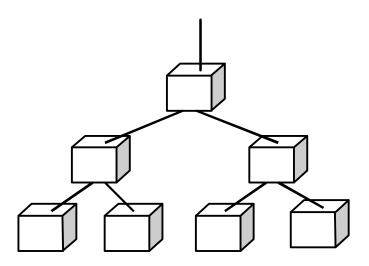


Control Network

Boot, Monitoring and Diagnostics

Three-dimensional Torus Network

- 32x32x64 connectivity
- Backbone for one-to-one and one-to-some communications
- 1.4 Gb/s bi-directional bandwidth in all 6 directions (Total 2.1 GB/s/node)
- 64k * 6 * 1.4Gb/s = 68 TB/s total torus bandwidth
- 4 * 32 *32 * 1.4Gb/s = 5.6 Tb/s Bisectional Bandwidth
- Worst case hardware latency through node ~ 69nsec
- Virtual cut-through routing with multipacket buffering on collision
 - Minimal
 - Adaptive
 - Deadlock Free
- Class Routing Capability (Deadlock-free Hardware Multicast)
 - Packets can be deposited along route to specified destination.
 - Allows for efficient one to many in some instances
- Active messages allows for fast transposes as required in FFTs.
- Independent Channels and Control for each Node Processor

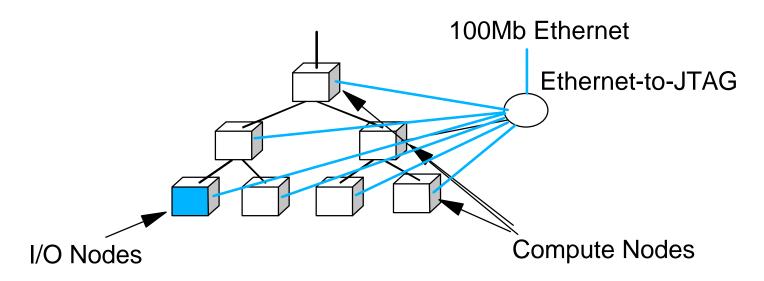

Tree Network I/O node (optional)

- High Bandwidth one-to-all
 - 2.8Gb/s to all 64k nodes 68TB/s aggregate bandwidth
- Arithmetic operations implemented in tree

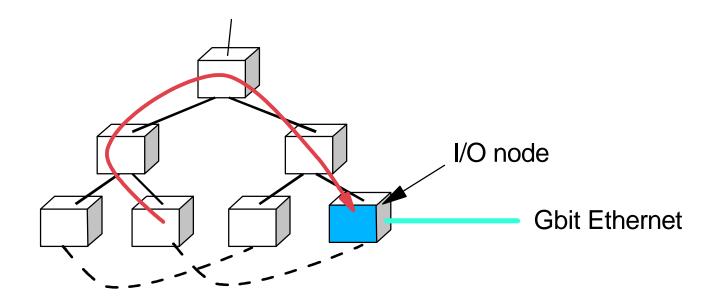
Integer/ Floating Point Maximum/Minimum Integer addition/subtract

- Latency of tree less than 2.5usec to top, additional 2.5usec to broadcast to all
- Global sum over 64k in less than 2.5 usec (to top of tree)
- Used for disk/host funnel in/out of I/O nodes.
- Minimal impact on cabling
- Partitioned with Torus boundaries
- Flexible local routing table
- Good scaleability
- Fault Tolerant
- Used as Point-to-point for File I/O

Fast Barriers



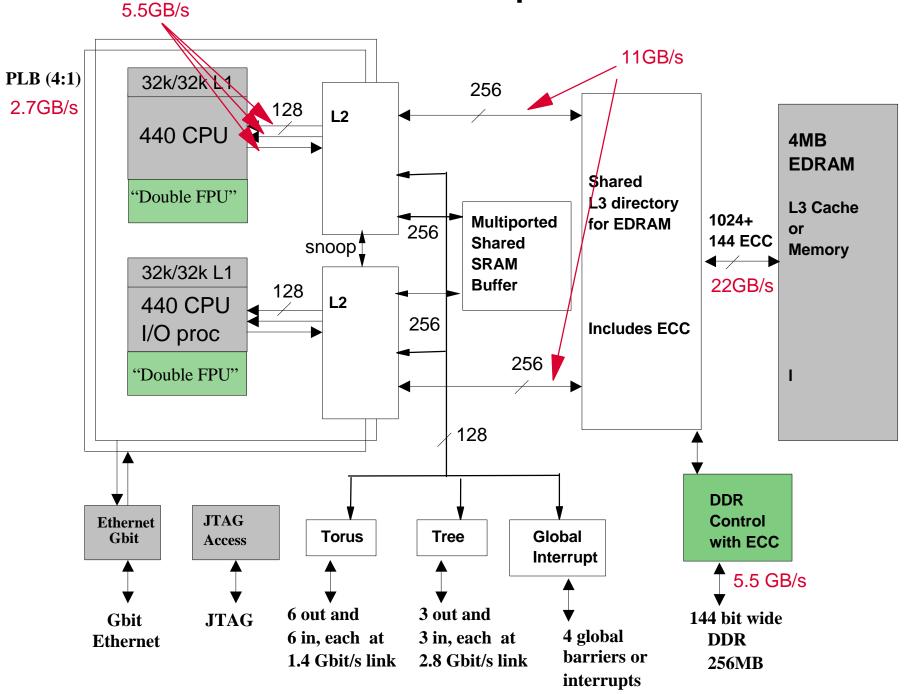
- Four Independent Barrier or Interrupt Channels
 - Independently Configurable as "or" or "and"
- Asynchronous Propagation
 - Halt operation quickly (current estimate is 1.3usec worst case round trip)
 - > 3/4 of this delay is time-of-flight.
- Sticky bit operation
 - Allows global barriers with a single channel.
- User Space Accessible
 - System selectable
- Partitions along same boundaries as Tree, and Torus
 - Each user partition contains it's own set of barrier/ interrupt signals


Control Network

JTAG interface to 100Mb Ethernet

- direct access to all nodes.
- boot, system debug availability.
- runtime noninvasive RAS support.
- non-invasive access to performance counters
- Direct access to shared SRAM in every node

Ethernet Disk/Host I/O System


Gb Ethernet on all I/O nodes

- Gbit Ethernet Integrated in all node ASICs but only used on I/O nodes.
- Funnel via global tree.
- I/O nodes use same ASIC but are dedicated to I/O Tasks.
- I/O nodes can utilize larger memory.

Dedicated DMA controller for transfer to/from Memory Configurable ratio of Compute to I/O nodes

I/O nodes are leaves on the tree network

BlueGene/L Compute ASIC

Floating Point Unit

Quadword Load Data FPR: Secondary FPR: Primary P31 831 Primary: Scalar Side Secondary

Quadword Store data

Level 2 Cache

Independent L2 Caches

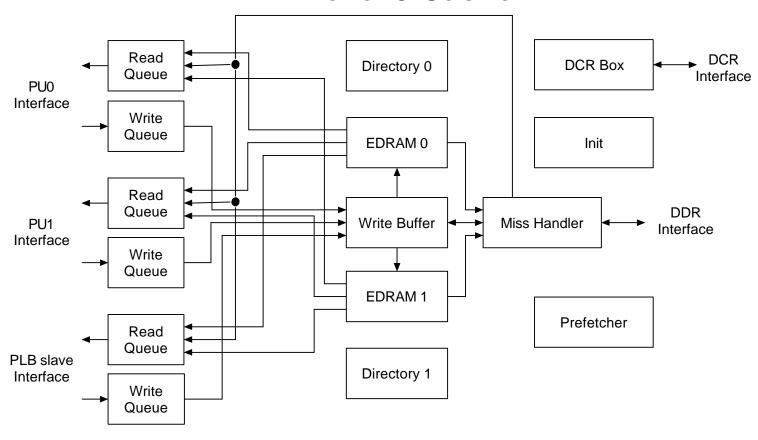
- 16 128B L2 Cache lines (fully associative)
- Low Latency Interface to Processor Cores

1-2 processor cycles additional latency

Prefetching

Configurable prefetching modes

None


Always

Confirmed

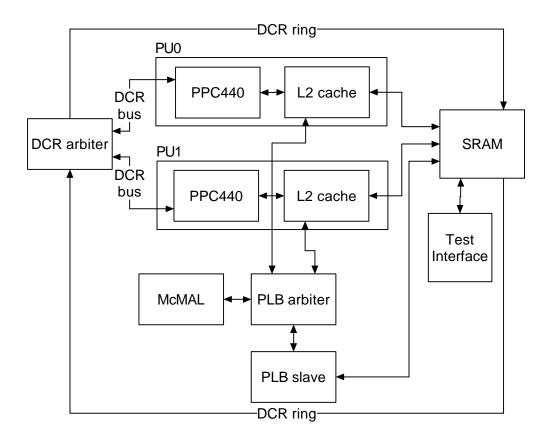
Coherency

Memory system is coherent outside the L1 caches

Level 3 Cache

4 MB eDRAM based L3 cache

- Organized as two 8-way set associative banks
- Simultaneous access to both banks
- 22 GB/s peak bandwidth


Prefetching

Programmable Prefetch Depth

Partitionability

Flexible configuration of memory/cache mapped in 256KB increments

Shared SRAM

Low Latency (~ 4 cycles) Access to small SRAM

- Simultaneous Access from both processor units
- Used in conjunction with Lock Box for messaging

Shared Hardware Locks / Blind Device

Locks provide atomic test and set

- Accessible with a single load operation
- 256 independent single bit locks
- Load returns the status of the lock

- Blind device provides a dummy read address
 - Assists in L1 cache control (proper reads can clear cache)

Memory System

atency and Bandwidth estimates

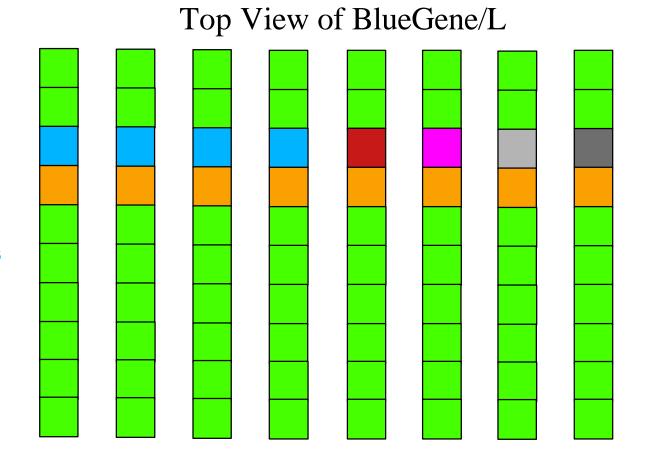
- Quadload
- random assumes (1/2 cache line)
- Bandwidth for Random Access (6/(9+latency))*16B/cycle

L1 zero-wait state latency

L1 internal bandwidth

3 outstanding line fetches

	latency	Sustained Bandwidth	Sustained Bandwidth
		Random Access	Sequential Access
L1	3	16.0B/cycle	16.0B/cycle
L2	11	2.7B/cycle	5.3B/cycle
SRAM	15	2.0B/cycle	5.3B/cycle
L3 (eDRAM page hit)	23	1.5B/cycle	5.3B/cycle
L3 (eDRAM page miss)	31	1.2B/cycle	(NA)
External DRAM (single processor)	75	0.57 B/cycle	5.3B/cycle
External DRAM(dual processor)	75	0.57 B/cycle	4.0B/cycle


Partitioning for Accessibility and Reliability

Partitioning:

- Multiple User machine accomplished through space partitioning.
- All networks (torus, global tree and Ethernet I/O) partition together. Users are protected from other partitions through hardware.
- Performance is not affected by partitioning. (some longer cables is the only effect)

Reliability:

- Partitioning allows for sectors to be swapped in for known bad sectors.
- Packaging allows for simple non-intrusive access to bad node cards.

Possible rack partitioning:

- 1@ 64k node system
- + 1@ 8k system
- + 1@ 4k system
- + 4 @1k systems